Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici.

نویسندگان

  • A Brune
  • B Schink
چکیده

Permeabilized cells and cell extracts of Pelobacter acidigallici catalyzed the conversion of pyrogallol (1,2,3-trihydroxybenzene) to phloroglucinol (1,3,5-trihydroxybenzene) in the presence of 1,2,3,5-tetrahydroxybenzene. Pyrogallol consumption by resting cells stopped after lysis by French press or mild detergent (cetyltrimethylammonium bromide [CTAB]) treatment. Addition of 1,2,3,5-tetrahydroxybenzene to the assay mixture restored pyrogallol consumption and led to stoichiometric phloroglucinol accumulation. The stoichiometry of pyrogallol conversion to phloroglucinol was independent of the amount of tetrahydroxybenzene added. The tetrahydroxybenzene concentration limited the velocity of the transhydroxylation reaction, which reached a maximum at 1.5 mM tetrahydroxybenzene (1 U/mg of protein). Transhydroxylation was shown to be reversible. The equilibrium constant of the reaction was determined, and the free-energy change (delta G degree') of phloroglucinol formation from pyrogallol was calculated to be -15.5 kJ/mol. Permeabilized cells and cell extracts also catalyzed the transfer of hydroxyl moieties between other hydroxylated benzenes. Tetrahydroxybenzene and hydroxyhydroquinone participated as hydroxyl donors and as hydroxyl acceptors in the reaction, whereas pyrogallol, resorcinol, and phloroglucinol were hydroxylated by both donors. A novel mechanism deduced from these data involves intermolecular transfer of the hydroxyl moiety from the cosubstrate (1,2,3,5-tetrahydroxybenzene) to the substrate (pyrogallol), thus forming the product (phloroglucinol) and regenerating the cosubstrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Transhydroxylations Converting Hydroxyhydroquinone to Phloroglucinol in the Strictly Anaerobic, Fermentative Bacterium Pelobacter massiliensis.

The recently isolated fermenting bacterium Pelobacter massiliensis is the only strict anaerobe known to grow on hydroxyhydroquinone (1,2,4-trihydroxybenzene) as the sole source of carbon and energy, converting it to stoichiometric amounts of acetate. In this paper, we report on the enzymatic reactions involved in the conversion of hydroxyhydroquinone and pyrogallol (1,2,3-trihydroxybenzene) to ...

متن کامل

Transhydroxylase of Pelobacter acidigallici: a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol.

Trihydroxybenzenes are degraded anaerobically through the phloroglucinol pathway. In Pelobacter acidigallici as well as in Pelobacter massiliensis, pyrogallol is converted to phloroglucinol in the presence of 1,2,3,5-tetrahydroxybenzene by intermolecular hydroxyl transfer. The enzyme catalyzing this reaction was purified to chromatographic and electrophoretic homogeneity. Gel filtration and ele...

متن کامل

Towards the reaction mechanism of pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici.

Conversion of pyrogallol to phloroglucinol was studied with the molybdenum enzyme transhydroxylase of the strictly anaerobic fermenting bacterium Pelobacter acidigallici. Transhydroxylation experiments in H218O revealed that none of the hydroxyl groups of phloroglucinol was derived from water, confirming the concept that this enzyme transfers a hydroxyl group from the cosubstrate 1,2,3, 5-tetra...

متن کامل

Crystallization and preliminary X-ray analysis of the molybdenum-dependent pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici.

Crystals of the molybdo-/iron-sulfur protein pyrogallol:phloroglucinol hydroxyltransferase (transhydroxylase; EC 1.97.1.2) from Pelobacter acidigallici were grown by vapour diffusion in an N(2)/H(2) atmosphere using polyethylene glycol as a precipitant. In this microorganism, transhydroxylase converts pyrogallol to phloroglucinol in a unique reaction without oxygen transfer from water. Growth o...

متن کامل

Phloroglucinol in the Strictly Anaerobic, Fermentative Bacterium Pelobacter massiliensis

on hydroxyhydroquinone (1,2,4-trihydroxybenzene) as the sole source of carbon and energy, converting it to stoichiometric amounts of acetate. In this paper, we report on the enzymatic reactions involved in the conversion of hydroxyhydroquinone and pyrogallol (1,2,3-trihydroxybenzene) to phloroglucinol (1,3,5-trihydroxybenzene). Cell extracts of P. massiliensis transhydroxylate pyrogallol to phl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 172 2  شماره 

صفحات  -

تاریخ انتشار 1990